Unit II Part (a) ELECTROSTATICS

1. A dielectric material must be_____

a. resistor

b. Insulator

c. Conductor

d. Semiconductor ans:b

2. The energy stored in capacitance is given by _________
a. C²V
b. CV²/2
c. C²V/2
d. CV
ans:b

3. Electrolytic capacitors can be used for_____

a. a.c. only

b. d.c. only

- c. both a.c. and d.c.
- d. 50 Hz a.c.

ans:b

4. If two 10 μ F capacitors are connected in parallel, then the effective capacitance will be_____

a.2.5 μF b.40 μF

- c.0.4 μF
- d.20 μF
- ans:d

5. If a number of capacitors are connected in series then the total capacitance of combination is _____

a. greater than the capacitance of largest capacitor

b. greater than the capacitance of any capacitor

c. smaller than the capacitance of smallest capacitor

d. average of the capacitance of all capacitor ans:c

6.The total capacitance of five capacitor each of 10 $\mu F~$ in series is______ a.10 $\mu F~$ b.2 $\mu F~$ c.25 $\mu F~$

d. none of these ans:b

7. Two capacitors of capacitance $C_1=0.1~\mu F$ and $C_2=0.2~\mu F$ are connected in series across 300V source. The voltages across C1 will be_____

- a. 100 V b. 200 V c. 150 V
- d. 300 V

ans:b

8. A capacitor stores 0.4C charge at 2 V. Its capacitance is______

a. 0.4 F	
b. 0.2 F	
c. 3.2 F	
d. 0.8 F	
ans:b	

9. A20mF capacitor is in series with a 150 ohm resistor. The combination is placed across a 40V dc source. Time constant of the circuit is

a. 8 s

b. 3 s

c. 6 s

d. 2.4s ans: b

10. Three capacitors of values 3 μ F, 6 μ F, and 12 μ F are connected in parallel across an a.c. source. The maximum current pass through

a.3 μF b.6 μF c.12 μF d. all the capacitors ans:c

11.As per Coulomb's law a. F= $Q_1Q_2 / \epsilon_0 \epsilon_r d^2$ b. F= $Q_1Q_2 / 4\pi d^2$ c. F= $Q_1Q_2 / 4\pi \epsilon_0 \epsilon_r d^2$ d. F= $Q_1Q_2 / 4\pi \epsilon_0 \epsilon_r d$ ans: c

12. Electric field intensity at any point in an electric field is equal to_____

a. potential gradient

b. (potential gradient)²

- c. (potential gradient)^{1/2}
- d. (potential gradient)^{1/3}

ans: a

13. The lines of forces due to isolated charged particle are_____

a. always straight

- b. always curved
- c. sometimes curved

d. none of the above

ans: a

14. The direction of electric field due to positive charge is_____
a. away from the charge
b. towards the charge
c. both (a) and (b)
d. none of the above

ans: a

15. The unit of capacitance isa. Volts/Coulombb. Coulomb/Voltc. Ohmsd. Henry/Wbans: b

16. There is repulsive force between two charged objects when

a. Charges of unlike sign

b. they have the same number of protons

c. charges are of same sign

d. they have the same number of protons ans: c

17. The capacitance of a capacitor is not affected bya. distance between platesb. area of platesc. thickness of platesd. all of the aboveans: c

18. When there is an equal amount of positive and negative charges on an object the object isa. Positively chargedb. negatively chargedc. neutrald. superchargedans:c

19. Which of the following statements is correct?

a. Air capacitors have a black band to indicate the outside foil

b. Electrolytic capacitor must be connected in the correct polarity

c. Ceramic capacitors must be connected in the correct polarity

d. Mica capacitors are available in capacitance value of 1 to 10 μF ans: b

20. Three capacitors each of the capacity C are given. The resultant capacity 2/3 C can be obtained by using them

a. all in series

b. all in parallel

c. two in parallel and third in series with this combination

d. two in series and third in parallel across this combination.

ans:c

21. For which of the following parameter variation, the capacitance of the capacitor remains unaffected?

a. Distance between plates

b. Area of the plates

c. Nature of dielectric

d. Thickness of the plates

ans: d

22. Which of the following expression is correct for electric field strength?

a. E = D/ ϵ

b. E = D^2/ϵ

c. Ε = πD

d. E = π D²

ans: a

23. Which of the following statement is true?

a. The current in the discharging capacitor grows linearly

b. The current in the discharging capacitor grows exponentially

c. The current in the discharging capacitor decays exponentially

d. The current in the discharging capacitor decreases constantly

ans:c

24. In a capacitor the electric charge is deposited ona. metal platesb. dielectricc. both (a) and (b)d. none of the above

ans:a

25. Which of the following materials has the highest value of dielectric constant?

- a. Glass
- b. Vaccum
- c. Ceramics
- d. Oil
- ans: c

26. Capacitance of air capacitor increases with

a. increase in plate area and decrease in distance between the plates

b. increase in plate area and distance between the plates

c. decrease in plate area and value of applied voltage

d. reduction in plate area and distance between the plates

ans: a

27. A capacitor consists of

a. two insulators separated by a conductor

b. two conductor separated by a dielectric

c. two insulators only

d. two conductors only

ans:b

28. A paper capacitor is usually available in the form of a. tubes

- b. rolled foil
- c. disc

d. meshed plates

29. Air capacitors are generally available in the range

a. 10 to 400 pF

b. 1 to 20 pF c. 100 to 900 pF

d. 20 to 100 pF

ans:a

30. The unit of capacitance is

a. Henry

b. Ohm

c. Farad

d. Farad/m

ans:c

31. A capacitor charged to 200V has 2000 μC of charge. The value of capacitance will be a. 10 F b. 10 μF c. 100 μF d. 1000 μF

ans:b

32. Voltage across capacitor at any time't' during charging from a D.C. source of voltage V is given by a. $v = Ve^{-t/\lambda}$

b. $v = V(1-e^{-t/\lambda})$ c. $v = V^2 e^{-t/\lambda}$ d. $v = V^2(1-e^{-t/\lambda})$ ans:b

33. The ratio of electric flux density to electric field intensity is called of the mediuma. permeabilityb. permittivityc. reluctanced. capacitance

ans:b

34. Energy stored in the electrical field of a capacitor C when charged from a D.C, source of voltage V is equal to Joule
a. ½ CV²
b. ½ C²V
c. CV²
d. C²V
ans:a

35. The absolute permittivity of free space is given by a. 8.854×10^{-9} F/m b. 8.854×10^{-10} F/m c. 8.854×10^{-11} F/m d. 8.854×10^{-12} F/m ans:d

36. The relative permittivity of free space is given bya. 1b. 10

- c. 100
- d. 1000

ans:a

37. When 4 Volt e.m.f. is applied across a 1 Farad capacitor, it will store energy of

a. 2 Jouleb. 4 Joulec. 6 Jouled. 8 Jouleans:d

38. The capacitor preferred for high frequency circuits isa. air capacitorb. mica capacitorc. electrolytic capacitord. paper capacitorans:b

39. If a 6µF capacitor is charged to 200 V the charge in Coulomb will be _____ a. 800 $\,\mu\text{C}$

b. 900 μC

c. 1200 μC

d. 1600 μC

ans:c

40. Which of the following capacitors is marked for polarity_____? a. air

b. paper

c. mica

d. electrolyte

ans: d

41. Which of the following capacitor are usually used for radio frequency tuning_____

a. air

b. paper

c. mica

d. electrolyte

ans: b

42. The time constant of an R-C circuit is defined as the time during which capacitor charging voltage actually rises to ------percent of its ------ value a.37, initial b.63.2, initial c.63.2, final d.37, final ans: c

43. The time constant of an R-C circuit is defined as the time during which capacitor charging current actually falls to ------percent of its initial maximum value a.37 b.63 c.42 d.73

ans: a

44. Permittivity is expressed in______
a. Farad/sq-m
b. weber/metre
c. Farad/meter
d. weber/ square metre
ans:c

45. Dielectric strength of a material depends on______a. moisture contentb. temperature

c. thickness

d. all of the above

ans: d

46. 1 Volt /metre is same as
a. 1 metre/coulomb
b. 1 Newton metre
c. 1 Newton /Coulomb
d. 1 Joule /Coulomb
ans: c

47. The relative permittivity of air is_____ a.0 b.1.0006 c. 8.854×10^{-12} d. none of the above ans:b

48. The relative permittivity of a material is 10. Its absolute permittivity will be a. $8.854 \times 10^{-11} F/M$ b. $9 \times 10^8 F/M$ c. $5 \times 10^{-5} F/M$ d. $9 \times 10^5 F/M$ ans: a

49. The capacitance of a capacitor is relative permittivity

a. directly proportional tob. inversely proportional toc. independent ofd. directly proportional to square ofans: a

50. An air capacitor has the same dimensions that of a mica capacitor. If the capacitance of mica capacitor is 6 times that of air capacitor, then relative permittivity of mica is

a. 36

b. 12

c. 3

d. 6

ans: d

51. The most convenient way of achieving large capacitance is by using

- a. multiplate construction
- b. decreased distance between plates
- c. air as dielectric
- d. dielectric of low permittivity

ans: a

52. Two capacitors of capacitance C_1 and C_2 are connected in parallel. A charge Q given to them is shared. The ratio of charges Q_1/Q_2 is

a. C₂/ C₁
b. C₁/ C₂
c. C₁ C₂
d. 1/ C₁ C₂
ans: b

53. Two capacitors have capacitance 25 μF when in parallel and 6 μF when in series. Their individual capacitances are

a. 12 μF and 13 μF

b. 15 μF and 10 μF

c. 10 μF and 8 μF

d. none of the above

ans:b

54. If the dielectric of a capacitor is replaced by a conducting material the
a. capacitor will get heated up owing to eddy currents
b. plates will get short-circuited
c. capacitor can store infinite charge
d. capacitance will become very high ans:b

55. The total capacitance of two condensers is $.03\mu$ F when joined in series and 0.16μ F when connected in parallel. The products of two capacitance will be_____

a.5.33 b.2 c.3 d.0.48 ans:d

56. Joule / Coulomb is the unit ofa. Electric field potentialb. Potentialc. charged. none of the above.ans:b

57 .A 10μ F capacitor in series with an 1 M Ohm resistor is connected across a100 V d. c. supply. Determine the time constant of the circuit

a. 10 sec.b. 0.1 secc. 10mSecd. 100 Sec

ans:a

58. A 10μF capacitor in series with an 1 M Ohm resistor is connected across a100 V d. c. supply. Determine the initial value of charging current.

- a. 1mA b. 0.1 mA
- c. 0.01mA
- d. 1.00A

ans:b

59. A 10μ F capacitor in series with an 1 M Ohm resistor is connected across a100 V d. c. supply. Determine the initial rate of rise of voltage across the capacitor.

a. 0.1V/s b. 10V/s c. 0.01V/s d. 1V/s ans:b

60. A 10μ F capacitor in series with an 1 M Ohm resistor is connected across a100 V d. c. supply. Determine the capacitor voltage after a time equal to the time constant.

a.36V b.36.6V c.63.2V d.63 V ans:c

61. A 10μ F capacitor in series with an 1 M Ohm resistor is connected across a100 V d. c. supply. Determine the voltage across the capacitor 3sec. after switch on.

a.25.92V b.259.2V c.2.592V d.25V ans:a

62. A fully charged capacitor of 10μ F has a potential difference of 100V across its terminals. It is discharged through 1 K Ω resistor. Find Initial discharging current.

a.1A

b.10A

c.0.01A d.0.1A

ans:d

63. A fully charged capacitor of 10μ F has a potential difference of 100V across its terminals. It is discharged through 1 K Ohm resistor. Find discharging current at 2m Sec.

a. - 0.0818A b. - 0.01A c. - 0.00818A d. - 1A ans:a

64. A fully charged capacitor of 10μ F has a potential difference of 100V across its terminals. It is discharged through 1 K Ohm resistor. Find initial rate of fall in voltage across capacitor.

a. 10⁴ V/s
b. -10⁴ V/s
c. -1⁴ V/s
d. 10A
ans:b

65. A fully charged capacitor of 10μ F has a potential difference of 100V across its terminals. It is discharged through 1 K Ohm resistor. Find time constant of the circuit.

- a. 0.1sec
- b. 1sec
- c. 0.01sec
- d. 0.001sec
- ans:c

66. A capacitor consists of two similar plates each 10cm x 10cm mounted parallel and opposite to each other. What is the value of capacitance when distance between them is 1cm and dielectric used is air.

- a. 8.854 pF b. 8.854 μF
- c. 8.854 mF
- d. 8.854 F
- ans: a

67. The capacitance of capacitor formed by two parallel plates each 200 cm² in area separated by dielectric of 4mm thick is 0.0004μ F. If voltage of 20000 V is applied then the total charge on the plate is

a. 8µC

b. 8mC

- c. 8nC
- d. 8pC
- ans: a

68. A parallel plate capacitor has plate area of 2m² spaced by three slabs of dielectric materials. The relative permittivity's are 2,3 and 6 respectively and thickness are 0.4mm, 0.6mm and 0.12 mm respectively. Find the combined capacitance.

a. 0.000295 x 10-6 F

- b. 0.00295 x 10-6 F
- c. 0.0295 x 10-6 F
- d. 0. 295 x 10-6 F

ans: b

69. What is the unit of charge?

- a. Volt-Amp
- b. Henery
- c. Farad
- d. Coulomb
- ans: d

70. What will be the capacitance of four capacitors of equal capacitance 'C' when connected in parallel

- a. 4C
- b. C/4
- c. 3C/4
- d. C

ans: a

71. A region around a stationary electric charge has

- a. magnetic field
- b. electric field
- c. magnetic field and electric field

d. neither magnetic field nor electric field ans: b

72. One Farad is the same as

- a. One Coulomb/Volt
- b. One Joule/Coulomb
- c. One Joule/Volt
- d. One Coulomb /Joule

ans: a

73 . If Q be the charge and C be the capacitance then the energy stored in the capacitor is

- a. 1/2QC
- b. 1/QC
- c. Q²/2C
- d. Q/2C
- ans: c

74. What capacitance must be placed in series with a 15 μ F capacitor to give a total capacitance of 5 μ F

- a. 4µF
- b. 7.5μF
- c. 10μF
- d. 25µF
- ans: b

75. One Coulomb charge equals the charge on

- a. 6.42 x 10 ¹⁸ electrons
- b. 6.24 x 10¹⁸ atoms
- c 6.24 x 10 12 electrons
- d. none of these
- ans: a

76. The capacitance of parallel plate capacitor is given as

a.
$$C = \epsilon_0 A / d$$

b. $C = \epsilon_0 d / A$

c. C =
$$\frac{\in_o \in_r A}{d}$$

d. C = $\epsilon_r A / d$
ans: c

77. Two capacitors of 2 μ F and 4 μ F are connected in parallel across 100 V D.C. supply. Determine (i) Energy stored on each capacitor

a. 0. 1 J and 0. 2 J
b. 0.01 J and 0.02 J
c 1 J and 2 J
d. 0.001 J and 0.002 J

ans: b

78. The capacitance composit capacitor is given as

a. C =
$$\frac{\in_{o}A}{\frac{d_{1}}{\in_{r_{1}}} + \frac{d_{2}}{\in_{r_{2}}} + \frac{d_{3}}{\in_{r_{3}}}}$$

b. C = $\epsilon_{0} d / A$
c. C = $\frac{\epsilon_{o} \in_{r} A}{d}$
d. C = $\epsilon_{r} A / d$
ans: a

79. The plate area of a parallel-plate capacitor is 0.01 sq. m. The distance between the plates is 2.5 cm. The insulating medium is air. Find its capacitance.

a 3.54×10^{-12} F b. 35.4×10^{-12} F c 3.54×10^{-10} F d. 3.54×10^{-11} F ans: a 80. The plate area of a parallel-plate capacitor is 0.01 sq. m. The distance between the plates is 2.5 cm. What would be its capacitance, if the space between the plates is filled with an insulating material of relative permittivity 5?

a 177.1×10^{-12} F b. 1.771×10^{-12} F c. 17.71×10^{-10} F d. 17.71×10^{-12} F ans: d

81.A parallel-plate capacitor has two plates each of area 2.5 m2 separated by three dielectric materials of thickness 1, 2 and 3 mm and relative permittivity's of 2, 4 and 8 respectively. Calculate (i) the capacitance of the capacitor

a. 1.60 x 10-8 F b. 1.60 x 10-10 F c. 1.60 x 10-12 F d. 1.60 x 10-9 F ans: a

Unit II Part (b) AC FUNDAMENTALS

1. A standard sinusoidal voltage wave changes	ans:a
its polarity at	
a. maximum value	6.The average value of a sine wave of maximum
b. minimum value	value I _m over one cycle is
c. zero value	a. I _m /π
d. none of the above	b. 2Ι _m /π
ans:c	c. zero
	d. I _m /2
2. The period of a certain sine wave is 10	ans:c
milliseconds. Its frequency is	
a.10 MHz	7. The rms value of a sine wave of maximum
b.10 KHz	value 10A equals a dc current of
c.10 Hz	ampere.
d.100 Hz	a.7.07
ans:d	b.6.37
	c.5
3. Two sine waves are said to be in phase with	d.5.77
each other if they achieve their	ans:a
a. zero value at the same time	
b. maximum value at the time	8. The rms value of a sinusoidal voltage with
c. minimum value at the same time	peak-to-peak value of 240 V isV.
d. all of the above	a.84.84
ans:d	b.77.82
	c.94.68
4. The distance occupied by one complete cycle	d.89.15
of the wave is called its	ans:a
a. time period	
b. wavelength	9. The time period of a sinusoidal waveform
c. velocity	with 200 Hz frequency issecond.
d. frequency	a.0.05
ans:a	b.0.005
	c.0.0005
5. The rms value of a sine wave of peak value $I_{\rm m}$	d.0.5
is given by	ans:b
a. I _m /v2	
b. I _m	10. The peak value of a sine wave is 400 V. Its
c. I _m /2	average value is
d. I _m /π	a.254.6 V

b.282.6 V	a. 150 V
c.400 V	b. 216.5 V
d.565.5 V	c. 125 V
ans:a	d.108.25 V
	ans:b
11. The form factor of a sine wave is	
a.1.01	16. An alternating current is given by the
b.1.11	expression $i = 200 \sin(314t + \frac{\pi}{2})$ amperes.
c.1.21	The maximum value and frequency of the
d. none of the above	current are
ans:b	a. 200 A, 50 Hz
	b. 100√2, 50 Hz
12. A current is said to be alternating when it	c. 200 A, 100 Hz
changes in	d. 200 A, 25 Hz
a. magnitude only	ans:a
b. direction only	
c. both magnitude and direction	17.The average value of the current $i =$
d. neither magnitude nor direction	200 sin t from $t = 0$ to $t = \frac{\pi}{2}$ is
ans:c	2 ———— a 400 π
	h 400
13. An alternating current of 50 Hz frequency	$D. \frac{\pi}{\pi}$
and 100 A maximum value is given by	$C.\frac{1}{400}$
$a.i = 200 \sin 628t$	$d.\frac{\pi}{400}$
b.i = 100 sin 314t	ans:b
$c.i = 100\sqrt{2} \sin 314t$	
$d.i = 100\sqrt{2} \sin 157t$	18. When two quantities are in quadrature, the
ans:b	phase angles between them will be
	a.45°
14. An alternating current of 50 Hz frequency	b.90°
has a maximum value of 100 A. Its value 1/600	c.135°
second after the instant current is zero will	d.60°
be	ans:b

a. 25 A b. 12.5 A c. 50 A d. 75 A ans:c

15.A sinusoidal voltage varies from zero to a maximum of 250 V. The voltage at the instant of 60° of the cycle will be_____

19.The alternating voltage $e = 200 \sin 314t$ is applied to a device which offers an ohmic resistance of 20 Ω to the flow of current in one direction while entirely preventing the flow in the opposite direction. The average value of the current will be_____

a.5 A b.3.18 A

c.1.57 A d.1.10 A ans:b	a. 0.02 second b. 0.01 second c. 0.04 second d. 0.05 second ans:c
because	
 a. ac voltages can be easily changed in magnitude b. dc motors do not have fine speed control c. high voltage ac transmission is less efficient d. dc voltage can not be used for domestic appliances ans:a 	25. A sine wave has a maximum value of 20 V. Its value at 135° is a. 10 V b. 14.14 V c. 15 V d. 5 V ans:b
 21.In ac system, we generate sine waveform because a. it can be easily drawn b. it produces least disturbance in electrical circuits c. it is nature's standard d. other waves can not be produced easily ans:b 	26. An alternating voltage is given by $v = 30 sin314t$.The time taken by the voltage to reach 30 V for the first time isa. 0.02 second b. 0.1 second c. 0.03 second d. 0.005 second ans:d
 22will work only on dc supply. a. electric lamp b. refrigerator c. electroplating d. heater ans:c 	27. A sinusoidal current has a magnitude of 3 A at 120°. Its maximum value will be a. $\sqrt{3}$ A b. $\frac{\sqrt{3}}{2}$ A c. $2\sqrt{3}$ A d. 6 A ans:c
23.An alternating voltage is given by $v =$ 20 sin 157t. The frequency of the alternating voltage is a.50 Hz b.25 Hz c.100 Hz d.75 Hz ans:b 24. An alternating current is given by $i =$ 10 sin 314t. The time taken to generate two	28. An alternating current is given by $i = 10 sin314t$. Measuring time from $t = 0$, the time taken by the current to reach +10 V for the second time isa. 0.05 second b. 0.1 second c. 0.025 second d. 0.02 second ans:c

cycles of current is_____

29. An alternating voltage is given by $v = 100 \sin 314t$ volts. Its average value will be_____

a. 70.7 V

b. 50 V

c. 63.7 V d. 100 V

ans:c

30. An alternating current whose average value is 1 A will produce_____1 A dc under similar conditions.

a. less heat than

b. more heat than

c. the same heat as

d. none of the above

ans:b

31. A sinusoidal alternating current has a maximum value of I_m . Its average value will be

a. $\frac{lm}{\pi}$ b. $\frac{lm}{2\pi}$ c. $2\frac{lm}{\pi}$

d.none of the above ans:c

32. The area of a sinusoidal wave over a halfcycle is______ a.max.value \div 2 b.2 × max.value c.max.value \div π d. .max.value \div 2π ans:b 33. An alternating voltage is given by v =

200 *sin*314*t*. Its rms value will be_____ a. 100 V b. 282.8 V c. 141.4 V d. 121.4 V ans:c

34. A sinusoidal voltage is represented as $v = 141.4 \sin(314.18t - \frac{\pi}{2})$. Its rms value of voltage, frequency and phase angle are respectively______a. 141.42 V, 314.16 Hz, 90° b. 100 V, 100 Hz, -90° c. 87.92 V, 56 Hz, 90° d. 100 V,50 Hz, -90° ans:d

35. When two sinusoidal waves are 90° out of phase, then______a. both have their peak values at the same instant

b. both have their minimum values at the same instant

c. one has its peak value; while the other has zero valued. none of these

ans:c

36. The direction of current in an ac circuit is _______a. always in one directionb. varying from time to timec. unpredictable

d. from positive to negative

ans:b

37. Consider the sinusoidal waves: $A \sin(\omega t + 30^{\circ})$ and $B \sin(\omega t - 60^{\circ})$. The phase angle relationship between the two waves______a. B-wave lags A-wave by 90° b. B-wave lags A-wave by 60° c. B-wave lags A-wave by 30° d. B-wave and A-wave are in phase ans:a

38. A sinusoidal voltage is expressed as v = $20\sin(314.16t+\frac{\pi}{2})$ V. Its frequency and phase angle respectively are_ a. 314.16 Hz, 60° b. 60Hz, 60° c. 50 Hz, 60° d. 50 Hz, -60° ans:c 39. A sinusoidal voltage v₁ leads another sinusoidal voltage v₂ by 180°. Then_____ a. voltage v₂ leads voltage v₁ by 180° b. both voltage have their zero values at the same time c. both voltages have their peak values at the same time d. all of the above

ans:d

40.The rms value of an ac sinusoidal current is 10 A. Its peak value is_____

a. 7.07 A

b. 14.14 A

- c. 10 A
- d. 28.28 A
- ans:b

41. If A=10∠45° and B=5∠15°, then the value of A/B will be_____ a. $50∠60^{\circ}$ b. $2∠60^{\circ}$ c. $2∠-30^{\circ}$ d. $2∠30^{\circ}$

ans:d

42. When a phasor is multiplied by –j, it gets rotated through in the counterclockwise direction.

a.90° b.180°

c.270°

d. none of the above ans:c

43. The rms value of sinusoidally varying current is ______that of its average value.
a. more than
b. less than
c. same as
d. none of the above ans:a

44. Alternating voltages and currents are expressed in rms values because_____a. they can be easily determined

b. calculations become very simple

c. they give comparison with dc

d. none of the above

ans:c

45.The average value of $sin^2\theta$ over a complete

cycle is_____ a. +1 b. -1 c. $\frac{1}{2}$ d. zero ans:c

46.The average value of $\sin\theta$ over a complete cycle is_____

a. zero

b. +1

c. -1

d. $\frac{1}{2}$

ans:a

47. An alternating current is given by $i = Im \sin\theta$. The average value of squared wave of this current over a complete cycle is_____

a. I²_m/2

b. I_m/π

c. 2Ι_m/π

d. 21 _m	53. The peak factor of a sine waveform
ans:a	is
	a.1.11
48. The form factor of a sinusoidal wave	b.1.414
is	c.2
a.1.414	d.1.5
b.1.11	ans:b
c.2	
d.1.5	54.When a 15V square wave is connected
ans:b	across a 50V ac voltmeter, it will read
	a.15V
49. The filament of a vacuum tube requires 0.4A	$b.15 imes \sqrt{2} V$
dc to heat it. The rms value of ac required	c.15/√2 ∨
is	d.none of the above
a. $0.4 imes\sqrt{2}$ A	ans:a
$b.0.4 \div 2 A$	
$c.0.8 \div \sqrt{2} A$	55.A sine wave has a frequency of 50 Hz. Its
d. 0.4 A	angular frequency isradian/second.
ans:d	a.100π
	b.50π
50. A100 V peak ac is as effective asdc.	c.25π
a. 100 V	d.5π
b. 50 V	ans:a
c. 70.7 V	
d. none of the above	56. The period of a wave is
ans:c	a. the same as frequency
	b. time required to complete one cycle
51. The form factor of awave is 1.	c. expressed in amperes
a. sinusoidal	d. none of the above
b. square	ans:b
c. triangular	
d. sawtooth	57. The form factor is the ratio of
ans:b	a. peak value to rms value
	b. rms value to average value
52. Out of the followingwave is the	c. average value to rms value
peakiest.	d. none of the above
a. sinusoidal	ans:b
b. square	
c. rectangualr	58. The period of a sine wave is 1/50 seconds.
d. triangular	Its frequency is
ans:d	a. 20 Hz

b. 30 Hz	a. mean value
c. 40 Hz	b. rms value
d. 50 HZ	c. peak value
ans:d	d. average value
	ans:b
59. An ac current is given by $i = 200 sin 100\pi t$.	
It will achieve a value of 100A	64. The rms value and mean value is the same
aftersecond.	in the case of
a. <u>1</u>	a. traingular wave
900	b. sine wave
D. 800	c. square wave
$c.\frac{1}{700}$	d. half wave rectified sine wave
$d\frac{1}{1}$	ans:c
600 600	
ans:0	65. For the same peak value which of the
CO A boston is noted as 2201/ 10/10/ AC The	following wave will have the highest rms value?
bu. A heater is faled as 230V, 10KW, AC. The	a.square wave
value of 230V refers to	b.half wave rectified sine wave
a. average voltage	c.triangular wave
b. rms voltage	d.sine wave
c. peak voltage	ans:a
d. none of the above	
ans:b	66. For the same peak value which of the
	following wave will have the least mean value?
61. The peak value of a sine wave is 200V. Its	a. half wave rectified sine wave
average value is	b. triangular wave
a.127.4V	c. sine wave
b.141.4V	d. square wave
c.282.8V	ansta
d.200V	
ans:a	67. For a sine wave with peak value I_{max} , the rms
	value is
62. The rms value of a sine wave is 100A. Its	a. 0.5I _{max}
peak value is	b. 0.7071 _{max}
a.70.7A	$C_{\rm r}$ $(0.9)_{\rm max}$
b.141.4A	d. 1.4141
c.150A	ansib
d.282.8A	
ans:b	68. Form factor is the ratio of
	a. average value/rms value
63. The voltage of domestic supply is 220V. This	b. average value/peak value
figure represents	c. rms value/average value

ans:c ans:d 68. For a sine wave with peak value E_{max} , the 73. A sine wave of voltage varies from zero to maximum of 200V. How much is the voltage at the instant of 30° of the cycle? a. 0.636 E_{max} a.50V b. 0.707 E_{max} a.50V c. 0.434 E_{max} b.82.8V d. 1.414 E_{max} c.100V ans:a d.173.2V ans:a d.173.2V ans:c a.504 69. The current in a circuit is given by: $i =$ 100 sin 314 <i>t</i> amperes. The maximum value and frequency of current are 74. How much rms current does a 300W, 200V a.50V 2A, 100 Hz b.1.5 A c.2 A b.100V2 A, 100 Hz b.1.5 A c.2 A c. 100 A, 50 Hz d. 3 A ans:b 70. For a frequency of 200 Hz, the time period 75. The rms value of a half-wave rectified current is 100 A. Its value for full-wave a.0.05 S a.141.4 c. 0.0005 S a.141.4 a.140 c. 0.0005 S c.200/ π a.40/ π ans:b d. 40/ π ars:a 71. An ac voltage of 50 Hz has a maximum value 76. The rms value of a sinusoidal ac current is equal to its value at an angle of	d. rms value/peak value	d.346V
68. For a sine wave with peak value E_{max} , the average value is	ans:c	ans:d
average value ismaximum of 200V. How much is the voltage at the instant of 30° of the cycle?a. 0.636 Emaxa.50Vb. 0.707Emaxa.50Vc. 0.434 Emaxb.822.8Vc. 1.414Emaxc.100Vans:ad.173.2Vans:ad.173.2Vassocassoc69. The current in a circuit is given by: $i =$ 100 sin 314t amperes. The maximum value and frequency of current are74. How much rms current does a 300W, 200Vbulb take from the 200V, 50 Hz power line?a.50V 2A, 100 Hzb.15 Ac. 100 A, 50 Hzc.2 Ad. 70.7 A, 50 Hzd. 3 Aans:cans:b70. For a frequency of 200 Hz, the time period will be75. The rms value of a half-wave rectified current is 100 A. Its value for full-wave rectification would beamperes.a.0.05 Sa.141.4c.0.0005 Sc.200/ π d. 3.5Vb.200b.12.5Vb.60c.25Vc.45d.43.8Va.30ans:cans:c72. For 200V rms value triangular wave, the peak voltage will be	68. For a sine wave with peak value E_{max} , the	73. A sine wave of voltage varies from zero to
a. 0.636 E _{max} the instant of 30° of the cycle? b. 0.707E _{max} a.50V c. 0.434 E _{max} b.82.8V d. 1.414E _{max} c.100V ans:a d.173.2V ans:a d.173.2V ans:a d.173.2V ass:a d.173.2V ass:a d.173.2V ass:a d.173.2V ass:a d.173.2V ass:a d.174. How much rms current does a 300W, 200V bulb take from the 200V, 50 Hz power line? a.05 A b.100V2 A, 100 Hz b.1.5 A c. 100 A, 50 Hz c.2 A d. 70.7 A, 50 Hz d.3 A ans:c ans:b 70. For a frequency of 200 Hz, the time period 75. The rms value of a half-wave rectified will be	average value is	maximum of 200V. How much is the voltage at
b. 0.707E _{max} a. 50V b. 822.8V d. 1.414E _{max} b. 82.8V d. 1.414E _{max} c. 100V ans:a d. 173.2V ans:c feg. The current in a circuit is given by: $i =$ 100 sin 314t amperes. The maximum value and frequency of current are a. 50V 2, 100 Hz b. 100V 2, 100 Hz b. 100V 2, 100 Hz c. 100 A, 50 Hz d. 70.7 S S S C 100 A, 50 S C 100	a. 0.636 E _{max}	the instant of 30° of the cycle?
c. 0.434 E _{max} b.82.8V d. 1.414E _{max} c. 100V ans:a d.173.2V ans:c ass:c 69. The current in a circuit is given by: <i>i</i> = 100 sin 314t amperes. The maximum value and frequency of current are	b. 0.707E _{max}	a.50V
d. 1.414E _{max} c. 100Vans:ad.173.2Vans:c69. The current in a circuit is given by: $i =$ 100 sin 314t amperes. The maximum value and frequency of current are	c. 0.434 E _{max}	b.82.8V
ans:ad.173.2V ans:c69. The current in a circuit is given by: $i =$ 100 sin 314t amperes. The maximum value and frequency of current are a.50V2 A, 100 Hz74. How much rms current does a 300W, 200V bulb take from the 200V, 50 Hz power line? a.0.5 Aa.50V2 A, 100 Hzb.10V2 A, 100 Hzb.1.5 Ac. 100 A, 50 Hzc.2 Ad. 3 Aans:cans:b70. For a frequency of 200 Hz, the time period will be a.0.05 S75. The rms value of a half-wave rectified current is 100 A. Its value for full-wave rectification would beamperes. a.141.4c. 0.0005 Sc. 200/ π d. 40/ π ans:a71. An ac voltage of 50 Hz has a maximum value of 50 V. Its value after 1/600 second after the instant the current is zero will be a.5V76. The rms value of a sinusoidal ac current is equal to its value at an angle ofdegrees. a.90b.12.5Vc.45 d.43.8V ans:c3.072. For 200V rms value triangular wave, the peak voltage will be a.200V77. The rms value of alternating current is given by steady (dc) current which when flowing through a given circuit for a given time produces	d. 1.414E _{max}	c.100V
ans:c69. The current in a circuit is given by: $i =$ 100 sin 314 amperes. The maximum value and frequency of current are a.50V2 A, 100 Hz74. How much rms current does a 300W, 200V bulb take from the 200V, 50 Hz power line? a.0.5 Ab.100V2 A, 100 Hzb.1.5 Ac. 100 A, 50 Hzc.2 Ad. 70.7 A, 50 Hzd. 3 Aans:cans:b70. For a frequency of 200 Hz, the time period will be75. The rms value of a half-wave rectified current is 100 A. Its value for full-wave rectification would beamperes. a.141.4c. 0.005 Sa.141.4c. 0.005 Sc. 200/ π d. 0.5 Sc. 200/ π ans:bd. 40/ π ans:c75. The rms value of a sinusoidal ac current is ans:a11. An ac voltage of 50 Hz has a maximum value of 50 V. Its value after 1/600 second after the instant the current is zero will be a.5V76. The rms value of a sinusoidal ac current is equal to its value at an angle ofdegrees. a.90b.12.5Vc.45c.25Vc.45d.43.8Vd.30ans:c77. The rms value of alternating current is given by steady (dc) current which when flowing through a given circuit for a given time produces	ans:a	d.173.2V
69. The current in a circuit is given by: $i =$ 100 sin 314t amperes. The maximum value and frequency of current are		ans:c
100 sin 314t amperes. The maximum value and frequency of current are	69. The current in a circuit is given by: $i =$	
frequency of current arebulb take from the 200V, 50 Hz power line?a.50V2 A, 100 Hza.0.5 Ab.100V2 A, 100 Hzb.1.5 Ac. 100 A, 50 Hzc.2 Ad.70.7 A, 50 Hzd. 3 Aans:cans:b70. For a frequency of 200 Hz, the time period75. The rms value of a half-wave rectifiedwill becurrent is 100 A. Its value for full-wavea.0.05 Sa.141.4c. 0.0005 Sc. 200/ π d. 0.5 Sa.141.4c. 0.0005 Sc. 200/ π d. 0.5 Sa.141.4c. 0.0005 Sc. 200/ π d. 40/ π ans:a71. An ac voltage of 50 Hz has a maximum value76. The rms value of a sinusoidal ac current isequal to its value after 1/600 second after therequal to its value at an angle ofdegrees.a.5Vb.60c.25Vc.45d.43.8Va.30ans:cans:c72. For 200V rms value triangular wave, the77. The rms value of alternating current is givenpeak voltage will beans:c72. For 200V rms value triangular wave, the77. The rms value of alternating current is givenby steady (dc) current which when flowinga.200Vb.222Vc.282Vproduces	$100 \sin 314t$ amperes. The maximum value and	74. How much rms current does a 300W, 200V
a.50V2 A, 100 Hz a.0.5 A b.100V2 A, 100 Hz b.1.5 A c. 100 A, 50 Hz c.2 A d. 70.7 A, 50 Hz d.3 A ans:c ans:b 70. For a frequency of 200 Hz, the time period 75. The rms value of a half-wave rectified current is 100 A. Its value for full-wave and the current is 100 A. Its value for full-wave and the current is 100 A. Its value for full-wave and the current is 100 A. Its value for full-wave and the current is 100 A. Its value for full-wave and the current is 100 A. Its value for full-wave and the current is 100 A. Its value for full-wave and the current is 100 A. Its value for full-wave and the current is 100 A. Its value for full-wave and the current is 100 A. Its value for full-wave and the follow and the current is 200 for the current is 200 for the current is 200 for the full-wave and the follow and the follo	frequency of current are	bulb take from the 200V, 50 Hz power line?
b.100V2 A, 100 Hz b.1.5 A c. 100 A, 50 Hz c.2 A d. 70.7 A, 50 Hz d.3 A ans:c ans:b 70. For a frequency of 200 Hz, the time period 75. The rms value of a half-wave rectified will be current is 100 A. Its value for full-wave a. 0.05 S a.141.4 b. 0.005 S a.141.4 c. 0.0005 S c. 200/π d. 0.5 S c. 200/π ans:b d. 40/π ans:a 71. An ac voltage of 50 Hz has a maximum value of 50 V. Its value after 1/600 second after the 76. The rms value of a sinusoidal ac current is equal to its value at an angle of degrees. a.5V b.60 b.12.5V c.45 d.43.8V d.30 ans:c ans:c 72. For 200V rms value triangular wave, the peak voltage will be a.200V by steady (dc) current which when flowing a.200V b.222V c.282V	a.50√2 A, 100 Hz	a.0.5 A
c. 100 A, 50 Hz c. 2 A d. 70.7 A, 50 Hz d. 3 A ans:c ans:b 70. For a frequency of 200 Hz, the time period 75. The rms value of a half-wave rectified will bea.005 S current is 100 A. Its value for full-wave a. 0.05 S a.141.4 b. 0.005 S a.141.4 c. 0.0005 S b.200 d. 0.5 S c. 200/π ans:b d. 40/π ans:a 71. An ac voltage of 50 Hz has a maximum value of 50 V. Its value after 1/600 second after the 76. The rms value of a sinusoidal ac current is sinstant the current is zero will be a.5V b.60 b.12.5V c.45 c.25V c.45 d.43.8V d.30 ans:c ans:c 72. For 200V rms value triangular wave, the peak voltage will be a.200V through a given circuit for a given time by steady (dc) current which when flowing through a given circuit for a given time produces	b.100√2 A, 100 Hz	b.1.5 A
d. 70.7 A, 50 Hz d. 3 A ans:c ans:b 70. For a frequency of 200 Hz, the time period 75. The rms value of a half-wave rectified will be current is 100 A. Its value for full-wave a. 0.05 S a.141.4 c. 0.0005 S a.141.4 c. 0.0005 S c. 200/π d. 3 A ans:b 71. An ac voltage of 50 Hz has a maximum value 76. The rms value of a sinusoidal ac current is equal to its value at an angle of degrees. a.5V b.60 b.12.5V c.45 c.25V c.45 d.43.8V d.30 ans:c ans:c 72. For 200V rms value triangular wave, the peak voltage will be ans:c 72. For 200V rms value triangular wave, the peak voltage will be 77. The rms value of alternating current is given through a given circuit for a given time by steady (dc) current which when flowing through a given circuit for a given time produces c.282V produces	c. 100 A, 50 Hz	c.2 A
ans:c ans:b 70. For a frequency of 200 Hz, the time period 75. The rms value of a half-wave rectified will be current is 100 A. Its value for full-wave a. 0.05 S a.141.4 c. 0.0005 S a.141.4 c. 0.0005 S b.200 d. 0.5 S b.200 d. 0.5 S c. 200/π ans:b d.40/π ans:a ans:a 71. An ac voltage of 50 Hz has a maximum value 76. The rms value of a sinusoidal ac current is equal to its value at an angle of degrees. a.5V a.90 b.12.5V b.60 c.25V c.45 d.43.8V d.30 ans:c ans:c 72. For 200V rms value triangular wave, the peak voltage will be 77. The rms value of alternating current is given by steady (dc) current which when flowing a.200V b.222V produces c.282V produces	d. 70.7 A, 50 Hz	d. 3 A
70. For a frequency of 200 Hz, the time period will bea.0.05 S 75. The rms value of a half-wave rectified current is 100 A. Its value for full-wave rectification would beamperes. a. 0.05 S a. 141.4 c. 0.0005 S b. 200 d. 0.5 S c. 200/π ans:b d. 40/π ans:a 71. An ac voltage of 50 Hz has a maximum value of 50 V. Its value after 1/600 second after the instant the current is zero will be 76. The rms value of a sinusoidal ac current is equal to its value at an angle ofdegrees. a.5V b.60 c.25V c.45 d.43.8V d.30 ans:c ans:c 72. For 200V rms value triangular wave, the peak voltage will be 77. The rms value of alternating current is given by steady (dc) current which when flowing a given circuit for a given time produces a.200V b.222V c.282V c.282V	ans:c	ans:b
will becurrent is 100 A. Its value for full-wavea. 0.05 Scurrent is 100 A. Its value for full-wavea. 0.05 Sa.141.4c. 0.0005 Sb.200d. 0.5 Sc. 200/πans:bd. 40/πans:bd. 40/πans:aans:a71. An ac voltage of 50 Hz has a maximum valueof 50 V. Its value after 1/600 second after theinstant the current is zero will bea.5Vb.60b.12.5Vc.45c.25Vc.45d.43.8Vd.30ans:cans:c72. For 200V rms value triangular wave, the77. The rms value of alternating current is givenpeak voltage will beby steady (dc) current which when flowinga.200Vb.222Vc.282Vproduces	70. For a frequency of 200 Hz, the time period	75. The rms value of a half-wave rectified
a. 0.05 Srectification would beamperes.b. 0.005 Sa.141.4c. 0.0005 Sb.200d. 0.5 Sc. 200/πans:bd. 40/πans:aans:a71. An ac voltage of 50 Hz has a maximum value76. The rms value of a sinusoidal ac current isof 50 V. Its value after 1/600 second after the instant the current is zero will be a.5V76. The rms value of a sinusoidal ac current isa.5Va.90b.12.5Vc.45c.25Vc.45d.43.8Vd.30ans:cans:c72. For 200V rms value triangular wave, the peak voltage will be77. The rms value of alternating current is given by steady (dc) current which when flowing through a given circuit for a given time producesb.222Vproduces	will be	current is 100 A. Its value for full-wave
b. 0.005 Sa.141.4c. 0.0005 Sb.200d. 0.5 Sc. 200/πans:bd. 40/πans:aans:a71. An ac voltage of 50 Hz has a maximum value76. The rms value of a sinusoidal ac current isof 50 V. Its value after 1/600 second after the instant the current is zero will be a.5V76. The rms value of a sinusoidal ac current isequal to its value after 1/600 second after the instant the current is zero will be a.5Va.90b.12.5Vb.60c.25Vc.45d.43.8Vd.30ans:cans:c72. For 200V rms value triangular wave, the peak voltage will be a.200V77. The rms value of alternating current is given by steady (dc) current which when flowing through a given circuit for a given time producesb.222V c.282Vc.45	a. 0.05 S	rectification would beamperes.
c. 0.0005 Sb.200d. 0.5 Sc. 200/πans:bd. 40/πans:aans:a71. An ac voltage of 50 Hz has a maximum value76. The rms value of a sinusoidal ac current isof 50 V. Its value after 1/600 second after the instant the current is zero will be a.5V76. The rms value of a sinusoidal ac current isa.5Va.90b.12.5Vb.60c.25Vc.45d.43.8Vd.30ans:cans:c72. For 200V rms value triangular wave, the peak voltage will be77. The rms value of alternating current is given by steady (dc) current which when flowing through a given circuit for a given time producesb.222V c.282Vproduces	b. 0.005 S	a.141.4
d. 0.5 Sc. 200/πans:bd. 40/πans:a71. An ac voltage of 50 Hz has a maximum valueof 50 V. Its value after 1/600 second after the instant the current is zero will be a.5V76. The rms value of a sinusoidal ac current is equal to its value at an angle ofdegrees.a.5Va.90b.12.5Vb.60c.25Vc.45d.43.8Vd.30ans:cans:c72. For 200V rms value triangular wave, the peak voltage will be77. The rms value of alternating current is given by steady (dc) current which when flowing through a given circuit for a given time producesb.222V c.282Vc.425	c. 0.0005 S	b.200
ans:bd. 40/π ans:a71. An ac voltage of 50 Hz has a maximum value of 50 V. Its value after 1/600 second after the instant the current is zero will be a.5V76. The rms value of a sinusoidal ac current is equal to its value at an angle ofdegrees. a.90a.5Va.90b.12.5Vb.60c.25Vc.45d.43.8Vd.30ans:c77. The rms value of alternating current is given by steady (dc) current which when flowing a.200Vb.222Vproducesc.282Vc.45	d. 0.5 S	c. 200/π
ans:a71. An ac voltage of 50 Hz has a maximum value of 50 V. Its value after 1/600 second after the instant the current is zero will be a.5V76. The rms value of a sinusoidal ac current is equal to its value at an angle ofdegrees. a.90a.5Va.90b.12.5Vb.60c.25Vc.45d.43.8Vd.30ans:cans:c72. For 200V rms value triangular wave, the peak voltage will be77. The rms value of alternating current is given by steady (dc) current which when flowing through a given circuit for a given time producesb.222Vc.282V	ans:b	d. 40/π
71. An ac voltage of 50 Hz has a maximum value of 50 V. Its value after 1/600 second after the instant the current is zero will be a.5V76. The rms value of a sinusoidal ac current is equal to its value at an angle ofdegrees. a.90a.5Va.90b.12.5Vc.45d.43.8Vd.30ans:cans:c72. For 200V rms value triangular wave, the peak voltage will be77. The rms value of alternating current is given by steady (dc) current which when flowing through a given circuit for a given time produces6.282Vc.282V		ans:a
of 50 V. Its value after 1/600 second after the instant the current is zero will be76. The rms value of a sinusoidal ac current is equal to its value at an angle ofdegrees. a.90a.5Va.5Va.90b.12.5Vb.60c.25Vc.45d.43.8Vd.30ans:cans:c72. For 200V rms value triangular wave, the peak voltage will be77. The rms value of alternating current is given by steady (dc) current which when flowing through a given circuit for a given time produces6.282Vc.282V	71. An ac voltage of 50 Hz has a maximum value	
instant the current is zero will beequal to its value at an angle ofdegrees.a.5Va.90b.12.5Vb.60c.25Vc.45d.43.8Vd.30ans:cans:c72. For 200V rms value triangular wave, the peak voltage will be77. The rms value of alternating current is given by steady (dc) current which when flowing through a given circuit for a given time producesb.222Vc.282V	of 50 V. Its value after 1/600 second after the	76. The rms value of a sinusoidal ac current is
a.5Va.90b.12.5Vb.60c.25Vc.45d.43.8Vd.30ans:cans:c72. For 200V rms value triangular wave, the peak voltage will be77. The rms value of alternating current is given by steady (dc) current which when flowing through a given circuit for a given time producesb.222Vproduces	instant the current is zero will be	equal to its value at an angle ofdegrees.
b.12.5Vb.60c.25Vc.45d.43.8Vd.30ans:cans:c72. For 200V rms value triangular wave, the peak voltage will be a.200V77. The rms value of alternating current is given by steady (dc) current which when flowing through a given circuit for a given time producesb.222Vproduces	a.5V	a.90
c.25Vc.45d.43.8Vd.30ans:cans:c72. For 200V rms value triangular wave, the peak voltage will be77. The rms value of alternating current is given by steady (dc) current which when flowing through a given circuit for a given time produces6.282Vc.45	b.12.5V	b.60
d.43.8Vd.30ans:cans:c72. For 200V rms value triangular wave, the peak voltage will be77. The rms value of alternating current is given by steady (dc) current which when flowing through a given circuit for a given time producesb.222Vproduces	c.25V	c.45
ans:cans:c72. For 200V rms value triangular wave, the peak voltage will be77. The rms value of alternating current is given by steady (dc) current which when flowing through a given circuit for a given time producesa.200V b.222V c.282Vproduces	d.43.8V	d.30
72. For 200V rms value triangular wave, the peak voltage will be77. The rms value of alternating current is given by steady (dc) current which when flowing through a given circuit for a given time produces200V c.282Vproduces	ans:c	ans:c
peak voltage will beby steady (dc) current which when flowinga.200Vthrough a given circuit for a given timeb.222Vproducesc.282V	72. For 200V rms value triangular wave, the	77. The rms value of alternating current is given
a.200V through a given circuit for a given time b.222V produces c.282V	peak voltage will be	by steady (dc) current which when flowing
b.222V produces c.282V	a.200V	through a given circuit for a given time
c.282V	b.222V	produces
	c.282V	

a. the more heat than produced by ac when d. 50 Hz flowing through the same circuit ans:d b. the same heat as produced by ac when 82. The rms value of half wave rectified sine flowing through the same circuit c. the less heat than produced by ac flowing wave is 200V. The rms value of full wave through the same circuit rectified ac will be d. none of the above a.282.8V ans:b b.141.4V c.111V 78. The square waveform of current has d. 100V following relation between rms value and ans:a average value: a. rms value is equal to average value 83. The voltage in a circuit follows the law: v =b. rms value of current is greater than average $100 sin\omega t$. If the frequency is 25 Hz, how long value will it take for the voltage to rise to 50V? c. rms value of current is less than average $a.\frac{1}{50}S$ value d. none of the above $b.\frac{1}{100}S$ ans:a $c.\frac{1}{300}S$ $\mathsf{d}.\frac{1}{600}\mathsf{S}$ 79. If a sinusoidal wave has frequency of 50 Hz with 30A rms current, which of the following ans:c equation represents the wave? a.42.42 sin 314t 84. The negative maximum of a cosine wave b.60 *sin*25*t* occurs at c.30 sin 50t a.30° d.84.84 sin25t b.45° ans:a c.90° d.180° 80. Which of the following waves has the ans:d highest value of peak factor? a. square wave 85. The rms value of pure cosine function b. sine wave is c. half wave rectified sine wave a. 0.5 of peak value d. triangular wave b. 0.707 of peak value ans:c c. same as peak value d. zero 81. The frequency of domestic power supply in ans:b India is a. 200 Hz b. 100 Hz

c. 60 Hz

86. An alternating voltage is given in volts by expression $v = 326 \sin 314t$. Its rms value and frequency are____

a.230V,50 Hz b. 230V,100 Hz

c. 326V,50 Hz

d. 326V,100 Hz

ans:a

87. According to which of the alternating current values in the cross sectional area of a conductor with regard to the heating effect is selected?

a. peak value

b. half peak value

c. average value

d. rms value

ans:d

88. The frequency of an alternating current is _____

a. the speed with which the alternator runs

b. the number of cycles generated in one minute

c. the number of waves passing through a point in one second

d. the number of electrons passing through a point in one second

ans:c

89. The equation of 50 Hz current sine wave having rms value of 60 A is______
a.60 sin 25t
b.60 sin 50t
c.84.84 sin314t
d42.42 sin314t.
ans:c

90. An electric iron designed for 110 V AC supply was rated at 500 W. It was put across a 220 V supply. Assuming that at 110 V, it

supplied 500 W output (i.e. no losses) at the new voltage it will supply______ a. 2500 W b. 2000 W c. 500 W d. 250 W

ans:b

91. The direction of current in an ac circuit_____

a. is from positive to negative

b. is always in one direction

c. varies from instant to instant

d. can not be determined

ans:c

92. The angular frequency of an alternating quantity is a mathematical quantity obtained by multiplying the frequency "f" of the alternating quantity by a factor_____

a.<u>π</u> 2 b.π

c.2π

d.4π

ans:c

93. The average value of an unsymmetrical alternating quantity is calculated over the

a. whole cycle

b. half cycle

c. unsymmetrical part of the waveform

d. first two cycles

ans:a

94. The mean value of the current $i = 20 \sin\theta$ from $\theta=0$ to $\theta=\frac{\pi}{2}$ is_____ a.40 π b. $\frac{40}{\pi}$ $d.\frac{\pi}{40}$ ans:b

95. A constant current of 2.8A exists in a resistor. The rms value of current is ______
a. 2.8 A
b. about 2 A
c. 1.4 A
d. undefined

ans:a

96. An alternating current is represented as $i = 70.7 \sin(520t + \frac{\pi}{6})$. The frequency and rms value of the current are______a. 82.76 Hz, 50 A b. 41.38 Hz, 25 A c. 41.38 Hz, 50 A d. 82.76 Hz, 25 A ans:a

97. The time period or periodic time T of an alternating quantity is the time taken in seconds to complete______

a. one cycle

b. alternation

c. none of the above

d. Half cycle

ans: a

98. The time period of an alternating quantity is
0.02 second. Its frequency will be______
a. 25 Hz
b. 50 Hz
c. 100 Hz
d. 0.02 Hz
ans: b

99. An ac current is given as i = 10 + 10 sin 314 t, the average and rms values of the current are_____
a. 16.36 A, 17.07 A

b. 10 A, 17.07 A c. 10 A, 12.25 A d. 16.36 A, 12.2 A ans:c

100. The size (cross-sectional area) of a conductor, with regard to the heating effect, is determined on the basis of value of current to be carried by it a. average value b. peak value c. rms value d. peak to peak value ans:c

101. The form factor for dc supply voltage is alwaysa. zerob. unityc. infinityd. any value between 0 and 1ans:b

102. The ______ varying alternating quantity can be represented as phasor.
a) circular
b) sinusoidally
c) rectangular
d) triagular
ans:b

103. The phasors are assumed to be rotated in ______ direction.

a) clockwise

b) anticlockwise

c) circular

d) all above

ans:b

104. In practice, alternating quantities are represented by their _____ values a. rms

b. averagec. rectangulard. polar

ans:a

105. Alternating quantities of _____ frequencies can be represented on same phasor diagram.

a. Same

b. Different

c. multiple

d. all above

ans: a

106. The phase of alternating quantity at any particular instant is the fraction of ______a. phase

b. time

- c. time period
- d. all above

ans:c

107.

In the above figure, the phase quantity at A is

a. T

b. T/2

c. T/3

d. T/4

ans:d

108.

In the above figure, the phase quantity at B is

a. T b.T/2 c.3T/4 d. T/4 ans:c

109. When phase of an alternating quantity is positive it means that quantity has some ______ instantaneous value at t=0

- a. zero
- b. positive
- c. negative

d. none of the above

ans:b

110. When phase of an alternating quantity is negative it means that quantity has some ______ instantaneous value at t=0

- a. zero
- b. positive
- c. negative

d. none of the above

ans:c

111. The difference between the _____ of two alternating quantities is called the phase difference.

- a. time
- b. phase angle
- c. Lengths
- d. both a and b
- ans:b

117. If v = Vm Sin ω t and i = Im Sin (ω t- Φ), the 112. The difference between the phase of two alternating quantities is called the_____. 'v' is said to _____ 'i' by angle Φ a. phase difference a. in phase b. sine difference b. lagging c. length difference c. leading d. none of the above d. all above ans:a ans:c 113. When phase difference between the two 118. If v = Vm Sin ω t and i = Im Sin (ω t+ Φ), the 'i' is said to _____ 'v' by angle Φ alternating quantities is zero, the two quantities are said to be in _____ a. in phase a. tandom b. lagging b. length c. leading c. phase d. all above d. time ans:c ans:c 119. If v = Vm Sin ω t and i = Im Sin (ω t+ Φ), the 114. When _____ between the two 'v' is said to _____ 'i' by angle Φ alternating quantities is zero, the two quantities a. in phase are said to be in phase. b. lag a. time difference c. lead b. length difference d. all above c. phase difference ans:b d. none of the above ans:c 120. If v = Vm Sin ω t and i = Im Sin ω t, the 'i' is said to _____ 'v' by angle Φ 115. When phase difference between the two a. in phase alternating quantities is _____, the two b. lag quantities are said to be in phase. c. lead d. all above a. one b. unity ans:a c. zero d. π/2 121. With respect to reference, plus sign of ans:c angle indicates _____ a. leading 116. If v = Vm Sin ω t and i = Im Sin (ω t- Φ), the 'i' b. lagging is said to be _____ 'v' by angle Φ c. in phase d. none of the above a. in phase b. lagging ans:a c. leading d. all above 122. With respect to reference, minus sign of angle indicates ans:b

a. leading	127. The lagging and leading word is relative to
b. lagging	the
c. in phase	a. base
d. none of the above	b. range
ans:b	c. reference
	d. angle
123. With respect to reference, sign of	ans:c
angle indicates lead.	
a. division	128. Polar form of v = 100 sin(100 π t+ π /6) Volt is
b. plus	
c. minus	a.61.2371+j35.3553
d.dot	b.70.7106∟30
ans:b	c. 61.2371∟35.3553
	d. 70.710+ j30
124. With respect to reference, sign of	ans:b
angle indicates lag.	
a. division	129. Rectangular form of V= 100 sin($100\pi t + \pi/6$)
b. plus	Volt is
c. minus	a.61.2371+j35.3553
d.dot	b.70.7106∟30
ans:c	c. 61.2371∟35.3553
	d. 70.710+ j30
125. The diagram in which different sinusoidal	ans:a
alternating quantities of the same frequency,	
are represented by individual phasors indicating	130. RMS value of current I = 25 + j40 Amp is
exact phase relationship is called	
a. graph	a.57.99
b. still diagram	b.47.1699
c. phasor diagram	c.60
d. picture	d.30
ans:c	ans:b
126. The diagram in which different sinusoidal	131. Two currents $I_1 = 10\angle 50$ and $I_2 = 5\angle -100$ A
alternating quantities of the same, are	flow in single phase AC circuit. Then $I_1+I_2 =$
represented by individual phasors indicating	
exact phase relationship is called phasor	a. 5.5596+ j4.924 A
diagram.	b. 5.5596∠4.924 A
a. time	c. 7.296+ j12.58 A

d. None of the above

ans:a

- b. frequency
- c. sign
- d. shape
- ans:b

132. Two currents $I_1 = 10∠50$ and $I_2 = 5∠ -100$ A flow in single phase AC circuit. Then $I_1-I_2 =$ =______a. 5.5596+ j4.924 A b. 5.5596 ↓ 4.924 A c. 7.296+ j12.58 A d. None of the above ans:c 133. Two currents $I_1 = 10∠50$ and $I_2 = 5∠ -100$ A

flow in single phase AC circuit. Then I_1/I_2 =_____ a. 5.5596+ j4.924 A b. 2 \angle 150 A c. 7.296+ j12.58 A d. None of the above

ans:b

134. The square of a j operator ______
a. can never be negative
b. can never be positive
c. could be either positive or negative
d. is equal to j
ans:b

135. A complex number ______
a. is the same as imaginary number
b. has real and imaginary part
c. is negative number
d. is merely a technical term
ans:b

136. The sum of (3+j6) and (-3-j6) is _____ a.0+j0 b.6+j12 c. -6-j12 d. 0-j12 ans:a

137. The product of (-4-j7) and (6-j2) is_____ a. -24+j14 b. 24-j14 c. -38-j34 d. -24-j14 ans:c

138. A sinusoidal voltage is represented as: v =141.4 sin(314.18t- π /2). Its rms value of voltage, frequency and phase angle are respectively______ a.141.42V, 314.16 Hz, 90 degrees b. 100V, 50 Hz, -90 degrees c. 87.92V, 56 Hz, 90 degrees d. 200V, 50 Hz, -90 degrees ans:b

139. When two sinusoidal waves are 90 degrees out of phase, then _____
a. both have their peak values at the same time
b. both have their minimum values at the same time
c. one has its peak value, other has zero value
d. none of these
ans:c

140. The direction of current in an AC circuit is

a. always in one directionb. varying time to time periodicallyc. unpredictabled. from positive to negativeans:b

141. Consider the sinusoidal waves: A sin $(\omega t+30)$ and B $\cos(\omega t-60)$. The phase angle relationship between two waves is: a. B wave lags A wave by 90 degrees b. B wave lags A wave by 60 degrees c. B wave lags A wave by 30 degrees d. B wave and A wave are in phase ans:d 142. When a phasor is multiplied by j and –j, it is rotated through _____ degrees in the anticlockwise direction respectively. a.90, 270 b.90, 90 c.90, 180 d.270,90 ans:a 143. If $e_1 = 100 \sin 2\pi f$ and $e_2 = 100 \sin (2\pi f - \Phi)$, then a. $e_1 \log e_2 by \Phi$ b. e_1 leads e_2 by Φ c. e_2 lags e_1 by Φ d. none of the above ans:c 144.The phase difference between two waveforms can be compared when they _____ a. have the same frequency

b. have the same peak value

c. have the same effective value

d. are sinusoidal

ans:a

145. If two sinusoids of the same frequency but of different amplitude and phase difference are added, the resultant is a _______
a. sinusoid of same frequency
b. sinusoid of double the original frequency
c. sinusoid of half the original frequency
d. non-sinusoid

ans:a

ans:b

146. If the phasor is multiplied by j, then _____a. only its magnitude changesb. only its direction changesc. both magnitude and direction changed. none of the above

147. In the complex number 4+j7, 7 is called the component a. real b. imaginary c. in-phase d. none of the above` ans:d 148. The reciprocal of a complex number is a____ a. complex number b. real component only c. quadrature component only d. none of above ans:a 149. If two complex numbers are equal, then____ a. only their magnitudes will be equal b. only their angles will be equal c. their in phase and quadrature components will be separately equal d.none of above ans:c 150. A phasor 2∟180 can be expressed as a.j2 b.-j2 c.-2 d.2 ans:c 151. A current of (3+j4) A is flowing through a circuit. The magnitude of current is _____ a. 7 A b. 5 A c. 1 A d. 1.33 A ans:b

152. The voltage applied in a circuit is given by 100 riangle 60 volts. It can be written as _____

a. 100∟-60	b.50
b.100∟240	c.60
c. 100∟-300	d.105
d. none of the above	ans:d
ans:c	
	158. A phasor is
153. The conjugate of -4+j3 is	a. a line which represents the magnitude and
a. 4-j3	phase of an alternating quantity
b4-j3	b. a line which represents the magnitude and
c.4+j3	direction of an alternating quantity
d. none of the above	c. a colored tag or band for distinction between
ans:b	different phases of a 3 phase supply
	d, an instrument used for measuring phases of
154 The difference of two conjugate number	an unbalanced 3 phase load
results in	ansch
a a complex number	
h in-phase component only	150 A sinusoidal voltage v. leads another
c. quadrature component only	sinusoidal voltagev by 190 degrees. Then
d neme of the obcur	sinusoidal voltagev ₂ by 180 degrees. Then
	a. Voltage v ₂ leads voltage v ₁ by 180 degrees
ansic	b. both voltage have their zero values at the
	same time
155. The reciprocal of J is	c. both voltage have their peak values at the
a.j	same time
bj	d. all of above
c.jxj	ans:d
d.none of the above	
ans:b	160. If A = $10 \bot 45$ and B = $5 \bot 15$, then the
	value of A/B will be
156. Two waves of same frequency have	a.50∟60
opposite phase when the phase angle between	b.2∟60
them is degrees	c. 2∟-30
a.360	d.2∟30
b.180	ans:d
c.90	
d.0	161. The length of a phasor in a phasor diagram
ans: b	normally represents the value of the
	alternating quantity
157. Two sinusoidal currents are given by $i_1 =$	a. rms or effective
100sin (ω t+ $\pi/3$) and i ₂ = 150sin(ω t- $\pi/4$). The	b. average
phase difference between them is	c. peak
degrees	d. none of these
a.15	ans:a

162. The two quantities are said to be in phase with each other when
a. the phase difference between two quantities is zero degree or radian
b. each of them pass through zero values at the same instant and rise in the same direction
c. each of them pass through zero values at the same instant but rises in the opposite directions
d. either (a) or (b)

163. The phase difference between the two waveforms can be compared only when theya. have the same frequencyb. have the same peak valuec. have the same effective valued. are sinusoidalans:a

164. The phasor diagram for alternating quantities can be drawn if they have waves

a. rectangular

- b. sinusoidal
- c. triangular

d. any of these

ans:b